Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 72(11): 2292-2302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36333611

RESUMO

Glutamate, one of the most important excitatory neurotransmitters, acts as a signal transducer in peripheral tissues and endocrine cells. Excessive glutamate secretion has been shown to cause excitotoxicity and neurodegenerative disease. Cerebrolysin is a mixture of enzymatically treated peptides derived from pig brain including neurotrophic factors, like brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF). The present study investigated the protective effects of cerebrolysin on glutamate transporters (EAAT 1, EAAT 2) and cytokines (IL-1ß and IL-10) activity in glutamate-mediated neurotoxicity. Primary cortex neuron culture was exposed to glutamate and successively treated with various cerebrolysin concentrations for 24 and 48 h. Our data showed that cerebrolysin primarily protects neurons by decreasing glutamate concentration in the synaptic cleft. In addition, Cerebrolysin can decrease oxidative stress and neuron cell damage by increasing antioxidant activity and decreasing inflammation cytokine levels.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Doenças Neurodegenerativas , Suínos , Animais , Ácido Glutâmico/toxicidade , Estresse Oxidativo
2.
J Pers Med ; 12(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36294740

RESUMO

Hypertension, as a primary risk factor for many fatal disorders, is prevalent in the elderly. There is wide literature on hypertension dealing with its biological and/or biochemical aspects; however, limited research is available on the multifactorial nature of hypertension from a mechanobiological standpoint. This study intended to study in parallel histopathological alterations and deviated protein expressions with the mechanical behavior of the hypertensive tissues. The Goldblatt (2K1C) method was chosen for induction of renovascular hypertension in rabbits. The microstructural and immunohistological characteristics of the aortic, pancreatic, and brain vasculature were investigated. The mechanical properties of the aortic tissue were also evaluated using biaxial tensile tests. Our findings indicated severe hypertrophy of the hypertensive vessels and declined content of intact smooth muscle cells. Most of the collagen I content of the wall was compromised and less functional type III collagen was highly expressed. Reversed collagen I to collagen III ratio was the main contributor to the hypertrophic and less stiff hypertensive vessel walls. The multifactorial nature of hypertension is illustrated, and smooth muscle cell detachment is identified as the sign of described degenerative cascades all along the arterial tree.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...